TY - JOUR
T1 - Vorinostat synergizes with EGFR inhibitors in NSCLC cells by increasing ROS via up-regulation of the major mitochondrial porin VDAC1 and modulation of the c-Myc-NRF2-KEAP1 pathway
AU - Leone, Alessandra
AU - Roca, Maria Serena
AU - Ciardiello, Chiara
AU - Terranova-Barberio, Manuela
AU - Vitagliano, Carlo
AU - Ciliberto, Gennaro
AU - Mancini, Rita
AU - Di Gennaro, Elena
AU - Bruzzese, Francesca
AU - Budillon, Alfredo
PY - 2015/12/1
Y1 - 2015/12/1
N2 - In non-small-cell lung cancer (NSCLC) patients, the activation of alternative pathways contributes to the limited efficacy of the epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) gefitinib and erlotinib. The present study examines a panel of EGFR wild-type, K-Ras mutated, NSCLC lines, which were all intrinsically resistant to EGFR-TKIs, and demonstrates that the histone deacetylase inhibitor vorinostat can improve the therapeutic efficacy of gefitinib or erlotinib, inducing strong synergistic antiproliferative and pro-apoptotic effects that are paralleled by reactive oxygen species accumulation and by increased DNA damage. By knockdown experiments, we suggested that the up-regulation of voltage-dependent anion-selective channel protein 1 (VDAC1), the major mitochondrial porin of the outer mitochondrial membrane, which was induced by vorinostat and further increased by the combination, could be functionally involved in oxidative stress-dependent apoptosis. Significantly, we also observed the attenuation of the expression of both the enzyme hexokinase1, a negative VDAC1 regulator, and the anti-apoptotic porin VDAC2, only in the combination setting, suggesting convergent mechanisms that enhanced mitochondria-dependent apoptosis by targeting VDAC protein functions. Furthermore, the prosurvival capacities of the cells were also inhibited by the combination treatments, as shown by complete pAKT deactivation, increased GSK3β expression, and c-Myc down-regulation. Finally, we observed that the combination treatment of vorinostat and either of the EGFR-TKIs induced the down-regulation of the c-Myc-regulated nuclear factor erythroid 2-related factor 2 (NRF2) transcription factor and the up-regulation of the NRF2 repressor Kelch-like ECH-associated protein 1 regulator (KEAP1). These two genes are crucial for the redox stress response, often dysfunctional in NSCLC, and involved in EGFR-TKI resistance. Taken together, these results are the first to demonstrate that altering redox homeostasis is a new mechanism underlying the observed synergism between vorinostat and EGFR TKIs in NSCLC.
AB - In non-small-cell lung cancer (NSCLC) patients, the activation of alternative pathways contributes to the limited efficacy of the epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) gefitinib and erlotinib. The present study examines a panel of EGFR wild-type, K-Ras mutated, NSCLC lines, which were all intrinsically resistant to EGFR-TKIs, and demonstrates that the histone deacetylase inhibitor vorinostat can improve the therapeutic efficacy of gefitinib or erlotinib, inducing strong synergistic antiproliferative and pro-apoptotic effects that are paralleled by reactive oxygen species accumulation and by increased DNA damage. By knockdown experiments, we suggested that the up-regulation of voltage-dependent anion-selective channel protein 1 (VDAC1), the major mitochondrial porin of the outer mitochondrial membrane, which was induced by vorinostat and further increased by the combination, could be functionally involved in oxidative stress-dependent apoptosis. Significantly, we also observed the attenuation of the expression of both the enzyme hexokinase1, a negative VDAC1 regulator, and the anti-apoptotic porin VDAC2, only in the combination setting, suggesting convergent mechanisms that enhanced mitochondria-dependent apoptosis by targeting VDAC protein functions. Furthermore, the prosurvival capacities of the cells were also inhibited by the combination treatments, as shown by complete pAKT deactivation, increased GSK3β expression, and c-Myc down-regulation. Finally, we observed that the combination treatment of vorinostat and either of the EGFR-TKIs induced the down-regulation of the c-Myc-regulated nuclear factor erythroid 2-related factor 2 (NRF2) transcription factor and the up-regulation of the NRF2 repressor Kelch-like ECH-associated protein 1 regulator (KEAP1). These two genes are crucial for the redox stress response, often dysfunctional in NSCLC, and involved in EGFR-TKI resistance. Taken together, these results are the first to demonstrate that altering redox homeostasis is a new mechanism underlying the observed synergism between vorinostat and EGFR TKIs in NSCLC.
KW - EGFR tyrosine kinase inhibitors
KW - HDACi
KW - KEAP1
KW - NRF2
KW - NSCLC cancer
KW - Oxidative stress
KW - ROS
KW - VDAC1
UR - http://www.scopus.com/inward/record.url?scp=84943183403&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84943183403&partnerID=8YFLogxK
U2 - 10.1016/j.freeradbiomed.2015.07.155
DO - 10.1016/j.freeradbiomed.2015.07.155
M3 - Article
C2 - 26409771
AN - SCOPUS:84943183403
VL - 89
SP - 287
EP - 299
JO - Free Radical Biology and Medicine
JF - Free Radical Biology and Medicine
SN - 0891-5849
M1 - 12541
ER -