Abstract
Original language | English |
---|---|
Pages (from-to) | 615-630 |
Number of pages | 16 |
Journal | Acta Diabetologica |
Volume | 54 |
Issue number | 7 |
DOIs | |
Publication status | Published - 2017 |
Keywords
- Autoimmunity
- Glucose monitoring
- Hypoglycemia
- Immunomodulation
- Insulin pump
- lactic acid
- pyruvic acid
- insulin
- aerobic exercise
- Article
- exercise
- glycemic control
- glycolysis
- human
- immunomodulation
- insulin dependent diabetes mellitus
- insulin response
- insulin sensitivity
- lipid metabolism
- nonhuman
- outcome assessment
- practice guideline
- priority journal
- protein metabolism
- resistance training
- risk benefit analysis
- treatment indication
- animal
- glucose blood level
- healthy lifestyle
- insulin infusion
- kinesiotherapy
- metabolism
- non insulin dependent diabetes mellitus
- physiology
- Animals
- Blood Glucose
- Diabetes Mellitus, Type 1
- Diabetes Mellitus, Type 2
- Exercise
- Exercise Therapy
- Guidelines as Topic
- Healthy Lifestyle
- Humans
- Insulin
- Insulin Infusion Systems
Fingerprint
Dive into the research topics of 'Why should people with type 1 diabetes exercise regularly?'. Together they form a unique fingerprint.Cite this
- APA
- Standard
- Harvard
- Vancouver
- Author
- BIBTEX
- RIS
Why should people with type 1 diabetes exercise regularly? / Codella, R.; Terruzzi, I.; Luzi, L.
In: Acta Diabetologica, Vol. 54, No. 7, 2017, p. 615-630.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Why should people with type 1 diabetes exercise regularly?
AU - Codella, R.
AU - Terruzzi, I.
AU - Luzi, L.
N1 - Cited By :2 Export Date: 2 March 2018 CODEN: ACDAE Correspondence Address: Codella, R.; Department of Biomedical Sciences for Health, University of Milan, Via F.lli Cervi 93, Segrate, Italy; email: roberto.codella@unimi.it Chemicals/CAS: lactic acid, 113-21-3, 50-21-5; pyruvic acid, 127-17-3, 19071-34-2, 57-60-3; insulin, 9004-10-8; Blood Glucose; Insulin References: Kahn, S.E., Prigeon, R.L., McCulloch, D.K., Quantification of the relationship between insulin sensitivity and β-cell function in human subjects: evidence for a hyperbolic function (1993) Diabetes, 42, pp. 1663-1672. , COI: 1:CAS:528:DyaK3sXms1ejsr4%3D, PID: 8405710; Codella, R., Lanzoni, G., Zoso, A., Moderate intensity training impact on the inflammatory status and glycemic profiles in NOD mice (2015) J Diabetes Res; Luzi, L., Codella, R., Lauriola, V., Immunomodulatory effects of exercise in type 1 diabetes mellitus (2011) Diabetes, 60, pp. A209-A210; Codella, R., Luzi, L., Inverardi, L., Ricordi, C., The anti-inflammatory effects of exercise in the syndromic thread of diabetes and autoimmunity (2015) Eur Rev Med Pharmacol Sci, 19, pp. 3709-3722. , COI: 1:STN:280:DC%2BC28zlvVCktg%3D%3D, PID: 26502862; Delmonte, V., Peixoto, E.M.L., Poggioli, R., Ten years’ evaluation of diet, anthropometry, and physical exercise adherence after islet allotransplantation (2013) Transpl Proc, 45, pp. 2025-2028. , COI: 1:STN:280:DC%2BC3sjis1SgtQ%3D%3D; Adamo, M., Codella, R., Casiraghi, F., Active subjects with autoimmune type 1 diabetes have better metabolic profiles than sedentary controls (2017) Cell Transpl, 26 (1), pp. 23-32. , COI: 1:STN:280:DC%2BC1c%2Fltl2rsw%3D%3D; Delmonte, V., Codella, R., Piemonti, L., Effects of exercise in a islet-transplanted half-marathon runner: outcome on diabetes management, training and metabolic profile (2014) Sport Sci Health, 10, pp. 49-52; Codella, R., Adamo, M., Maffi, P., Ultra-marathon 100 km in an islet-transplanted runner (2016) Acta Diabetol, , PID: 27878382; Fischer, C.P., Interleukin-6 in acute exercise and training: what is the biological relevance? (2006) Exerc Immunol Rev, 12, pp. 6-33. , PID: 17201070; Ellingsgaard, H., Ehses, J.A., Hammar, E.B., Interleukin-6 regulates pancreatic alpha-cell mass expansion (2008) Proc Natl Acad Sci USA, 105, pp. 13163-13168. , COI: 1:CAS:528:DC%2BD1cXhtFSntr7F, PID: 18719127; Ellingsgaard, H., Hauselmann, I., Schuler, B., Interleukin-6 enhances insulin secretion by increasing glucagon-like peptide-1 secretion from L cells and alpha cells (2011) Nat Med, 17, pp. 1481-1489. , COI: 1:CAS:528:DC%2BC3MXhtlyisL%2FN, PID: 22037645; da Silva, K.M., Bittencourt, A., Homem de Bittencourt, P.I., Physiological concentrations of interleukin-6 directly promote insulin secretion, signal transduction, nitric oxide release, and redox status in a clonal pancreatic β-cell line and mouse islets (2012) J Endocrinol, 214, pp. 301-311; Suzuki, T., Imai, J., Yamada, T., Interleukin-6 enhances glucose-stimulated insulin secretion from pancreatic beta-cells: potential involvement of the PLC-IP3-dependent pathway (2011) Diabetes, 60, pp. 537-547. , COI: 1:CAS:528:DC%2BC3MXisVOmurc%3D, PID: 21270264; Codella, R., Terruzzi, I., Luzi, L., Sugars, exercise and health (2016) J Affect Disord, , PID: 27817910; Rabasa-Lhoret, R., Bourque, J., Ducros, F., Chiasson, J.L., Guidelines for premeal insulin dose reduction for postprandial exercise of different intensities and durations in type 1 diabetic subjects treated intensively with a basal-bolus insulin regimen (ultralente-lispro) (2001) Diabetes Care, 24, pp. 625-630. , COI: 1:CAS:528:DC%2BD3MXivVOmtbs%3D, PID: 11315820; Dubé, M.C., Weisnagel, S.J., Prud’homme, D., Lavoie, C., Exercise and newer insulins: How much glucose supplement to avoid hypoglycemia? (2005) Med Sci Sports Exerc, 37, pp. 1276-1282. , PID: 16118572; Yardley, J.E., Iscoe, K.E., Sigal, R.J., Insulin pump therapy is associated with less post-exercise hyperglycemia than multiple daily injections: an observational study of physically active type 1 diabetes patients (2013) Diabetes Technol Ther; Cryer, P.E., Hypoglycemia in type 1 diabetes mellitus (2010) Endocrinol Metab Clin North Am, 39, pp. 641-654. , COI: 1:CAS:528:DC%2BC3cXhtVGqsr3P, PID: 20723825; Cryer, P.E., The barrier of hypoglycemia in diabetes (2008) Diabetes, 57, pp. 3169-3176. , COI: 1:CAS:528:DC%2BD1MXhsleisLY%3D, PID: 19033403; Davis, S.N., Mann, S., Galassetti, P., Effects of differing durations of antecedent hypoglycemia on counterregulatory responses to subsequent hypoglycemia in normal humans (2000) Diabetes, 49, pp. 1897-1903. , COI: 1:CAS:528:DC%2BD3cXnvVOmt7Y%3D, PID: 11078457; Galassetti, P., Tate, D., Neill, R.A., Effect of antecedent hypoglycemia on counterregulatory responses to subsequent euglycemic exercise in type 1 diabetes (2003) Diabetes, 52, pp. 1761-1769. , COI: 1:CAS:528:DC%2BD3sXltlWhtbs%3D, PID: 12829644; Lewis, G.D., Farrell, L., Wood, M.J., Metabolic signatures of exercise in human plasma (2010) Sci Transl Med, 2, pp. 33-37; Brugnara, L., Vinaixa, M., Murillo, S., Metabolomics approach for analyzing the effects of exercise in subjects with type 1 diabetes mellitus (2012) PLoS ONE, , PID: 22792382; Chatzinikolaou, A., Fatouros, I., Petridou, A., Adipose tissue lipolysis is upregulated in lean and obese men during acute resistance exercise (2008) Diabetes Care, 31, pp. 1397-1399. , COI: 1:CAS:528:DC%2BD1cXpt1Wrs7Y%3D, PID: 18375413; Davison, G.W., George, L., Jackson, S.K., Exercise, free radicals, and lipid peroxidation in type 1 diabetes mellitus (2002) Free Radic Biol Med, 33, pp. 1543-1551. , COI: 1:CAS:528:DC%2BD38XoslGgsLw%3D, PID: 12446212; Jia, G., DeMarco, V.G., Sowers, J.R., Insulin resistance and hyperinsulinaemia in diabetic cardiomyopathy (2015) Nat Rev Endocrinol, 12, pp. 144-153. , PID: 26678809; Kaul, K., Apostolopoulou, M., Roden, M., Insulin resistance in type 1 diabetes mellitus (2015) Metabolism, 64, pp. 1629-1639. , COI: 1:CAS:528:DC%2BC2MXhs1ersbbO, PID: 26455399; Schauer, I.E., Snell-Bergeon, J.K., Bergman, B.C., Insulin resistance, defective insulin-mediated fatty acid suppression, and coronary artery calcification in subjects with and without type 1 diabetes: the CACTI study (2011) Diabetes, 60, pp. 306-314. , COI: 1:CAS:528:DC%2BC3MXosVWntQ%3D%3D, PID: 20978091; Caprio, S., Amiel, S., Tamborlane, W.V., Defective free-fatty acid and oxidative glucose metabolism in IDDM during hypoglycemia. Influence of glycemic control (1990) Diabetes, 39, pp. 134-141. , COI: 1:STN:280:DyaK3M%2Fjt1Kjsg%3D%3D, PID: 2227120; Bergman, B.C., Howard, D., Schauer, I.E., Features of hepatic and skeletal muscle insulin resistance unique to type 1 diabetes (2012) J Clin Endocrinol Metab, 97, pp. 1663-1672. , COI: 1:CAS:528:DC%2BC38XntV2isb4%3D, PID: 22362823; Nadeau, K.J., Regensteiner, J.G., Bauer, T.A., Insulin resistance in adolescents with type 1 diabetes and its relationship to cardiovascular function (2010) J Clin Endocrinol Metab, 95, pp. 513-521. , COI: 1:CAS:528:DC%2BC3cXitVaju7g%3D, PID: 19915016; Perseghin, G., Lattuada, G., Danna, M., Insulin resistance, intramyocellular lipid content, and plasma adiponectin in patients with type 1 diabetes (2003) Am J Physiol Endocrinol Metab, 285, pp. E1174-E1181. , COI: 1:CAS:528:DC%2BD2cXhtlWr, PID: 12933352; Levin, K., Daa Schroeder, H., Alford, F.P., Beck-Nielsen, H., Morphometric documentation of abnormal intramyocellular fat storage and reduced glycogen in obese patients with Type II diabetes (2001) Diabetologia, 44, pp. 824-833. , COI: 1:CAS:528:DC%2BD3MXks1Ort70%3D, PID: 11508266; Caprio, S., Napoli, R., Saccà, L., Impaired stimulation of gluconeogenesis during prolonged hypoglycemia in intensively treated insulin-dependent diabetic subjects (1992) J Clin Endocrinol Metab, 75, pp. 1076-1080. , COI: 1:STN:280:DyaK3s%2Fhs1KhsA%3D%3D, PID: 1400874; Siafarikas, A., Johnston, R.J., Bulsara, M.K., Early loss of the glucagon response to hypoglycemia in adolescents with type 1 diabetes (2012) Diabetes Care, 35, pp. 1757-1762. , COI: 1:CAS:528:DC%2BC38XhsFCqsb7E, PID: 22699295; Popp, D.A., Shah, S.D., Cryer, P.E., Role of epinephrine-mediated beta-adrenergic mechanisms in hypoglycemic glucose counterregulation and posthypoglycemic hyperglycemia in insulin-dependent diabetes mellitus (1982) J Clin Invest, 69, pp. 315-326. , COI: 1:CAS:528:DyaL38XhtVWqsL4%3D, PID: 6120181; Hoffman, R.P., Sympathetic mechanisms of hypoglycemic counterregulation (2007) Curr Diabetes Rev, 3, pp. 185-193. , COI: 1:CAS:528:DC%2BD2sXhtVOgsbjM, PID: 18220670; Tesfaye, N., Seaquist, E.R., Neuroendocrine responses to hypoglycemia (2010) Ann N Y Acad Sci, 1212, pp. 12-28. , COI: 1:CAS:528:DC%2BC3MXmvVCisA%3D%3D, PID: 21039590; Sprague, J.E., Arbeláez, A.M., Glucose counterregulatory responses to hypoglycemia (2011) Pediatr Endocrinol Rev 9:463–73; quiz, pp. 474-475; Wasserman, D.H., Four grams of glucose (2009) Am J Physiol Endocrinol Metab, 296, pp. E11-E21. , COI: 1:CAS:528:DC%2BD1MXpsFChtQ%3D%3D, PID: 18840763; Camacho, R.C., Galassetti, P., Davis, S.N., Wasserman, D.H., Glucoregulation during and after exercise in health and insulin-dependent diabetes (2005) Exerc Sport Sci Rev, 33, pp. 17-23. , PID: 15640716; Mallad, A., Hinshaw, L., Schiavon, M., Exercise effects on postprandial glucose metabolism in type 1 diabetes: a triple-tracer approach (2015) Am J Physiol Endocrinol Metab, 308, pp. E1106-E1115. , COI: 1:CAS:528:DC%2BC2MXhtFymtL7E, PID: 25898950; Chokkalingam, K., Tsintzas, K., Snaar, J.E.M., Hyperinsulinaemia during exercise does not suppress hepatic glycogen concentrations in patients with type 1 diabetes: a magnetic resonance spectroscopy study (2007) Diabetologia, 50, pp. 1921-1929. , COI: 1:CAS:528:DC%2BD2sXos1Cjt7s%3D, PID: 17639304; Schneider, S.H., Vitug, A., Ananthakrishnan, R., Khachadurian, A.K., Impaired adrenergic response to prolonged exercise in type I diabetes (1991) Metabolism, 40, pp. 1219-1225. , COI: 1:STN:280:DyaK38%2FkvVGmsQ%3D%3D, PID: 1943751; Kacerovsky, M., Jones, J., Schmid, A.I., Postprandial and fasting hepatic glucose fluxes in long-standing type 1 diabetes (2011) Diabetes, 60, pp. 1752-1758. , COI: 1:CAS:528:DC%2BC3MXnvFeqtbc%3D, PID: 21562079; McMahon, S.K., Ferreira, L.D., Ratnam, N., Glucose requirements to maintain euglycemia after moderate-intensity afternoon exercise in adolescents with type 1 diabetes are increased in a biphasic manner (2007) J Clin Endocrinol Metab, 92, pp. 963-968. , COI: 1:CAS:528:DC%2BD2sXjtlGmsr4%3D, PID: 17118993; Mauras, N., Beck, R.W., Impact of exercise on overnight glycemic control in children with type 1 diabetes mellitus (2005) J Pediatr, 147, pp. 528-534; Taplin, C.E., Cobry, E., Messer, L., Preventing post-exercise nocturnal hypoglycemia in children with type 1 diabetes (2010) J Pediatr, 157 (784-788); Iscoe, K.E., Corcoran, M., Riddell, M.C., High rates of nocturnal hypoglycemia in a unique sports camp for athletes with type 1 diabetes: lessons learned from continuous glucose monitoring systems (2008) Can J Diabetes, 32, pp. 182-189. , COI: 1:CAS:528:DC%2BD1MXhtFOrs7fJ; Iscoe, K.E., Campbell, J.E., Jamnik, V., Efficacy of continuous real-time blood glucose monitoring during and after prolonged high-intensity cycling exercise: spinning with a continuous glucose monitoring system (2006) Diabetes Technol Ther, 8, pp. 627-635. , COI: 1:CAS:528:DC%2BD28Xht1Smt7bN, PID: 17109594; Impact of exercise on overnight glycemic control in children with type 1 diabetes mellitus (2005) J Pediatr, 147, pp. 528-534; Maran, A., Pavan, P., Bonsembiante, B., Continuous glucose monitoring reveals delayed nocturnal hypoglycemia after intermittent high-intensity exercise in nontrained patients with type 1 diabetes (2010) Diabetes Technol Ther, 12, pp. 763-768. , PID: 20807120; Standards of medical care in diabetes–2014 (2014) Diabetes Care, 37, pp. S14-S80; Benedini, S., Longo, S., Caumo, A., Metabolic and hormonal responses to a single session of kumite (free non-contact fight) and kata (highly ritualized fight) in karate athletes (2012) Sport Sci Health, 8, pp. 81-85. , COI: 1:STN:280:DC%2BC2sbptlKmtQ%3D%3D, PID: 23440907; Delvecchio, M., Zecchino, C., Salzano, G., Effects of moderate-severe exercise on blood glucose in Type 1 diabetic adolescents treated with insulin pump or glargine insulin (2009) J Endocrinol Invest, 32, pp. 519-524. , COI: 1:CAS:528:DC%2BD1MXhsFCktrvJ, PID: 19474521; Marliss, E.B., Vranic, M., Intense exercise has unique effects on both insulin release and its roles in glucoregulation: implications for diabetes (2002) Diabetes, , PID: 11815492; Robertson, K., Adolfsson, P., Scheiner, G., Exercise in children and adolescents with diabetes (2009) Pediatr Diabetes, 10, pp. 154-168. , PID: 19754626; Riddell, M.C., Sigal, R.J., Physical activity, exercise and diabetes (2013) Can J Diabetes, 37, pp. 359-360. , PID: 24321713; Gibney, J., Healy, M.-L., Sönksen, P.H., The growth hormone/insulin-like growth factor-I axis in exercise and sport (2007) Endocr Rev, 28, pp. 603-624. , COI: 1:CAS:528:DC%2BD2sXht1yit7rL, PID: 17785429; Pritzlaff, C.J., Wideman, L., Blumer, J., Catecholamine release, growth hormone secretion, and energy expenditure during exercise vs. recovery in men (2000) J Appl Physiol, 89, pp. 937-946. , COI: 1:CAS:528:DC%2BD3cXntV2jt78%3D, PID: 10956336; Pritzlaff-Roy, C.J., Widemen, L., Weltman, J.Y., Gender governs the relationship between exercise intensity and growth hormone release in young adults (2002) J Appl Physiol, 92, pp. 2053-2060. , COI: 1:CAS:528:DC%2BD38XjvFersr8%3D, PID: 11960957; Wideman, L., Weltman, J.Y., Hartman, M.L., Growth hormone release during acute and chronic aerobic and resistance exercise: recent findings (2002) Sports Med, 32, pp. 987-1004. , PID: 12457419; Brooks, G., Cell–cell and intracellular lactate shuttles (2009) J Physiol, 587, pp. 5591-5600. , COI: 1:CAS:528:DC%2BD1MXhsFGqtrfM, PID: 19805739; Harmer, A.R., Chisholm, D.J., McKenna, M.J., Sprint training increases muscle oxidative metabolism during high-intensity exercise in patients with type 1 diabetes (2008) Diabetes Care, 31, pp. 2097-2102. , COI: 1:CAS:528:DC%2BD1cXhsVeqsLzF, PID: 18716051; Fahey, A.J., Paramalingam, N., Davey, R.J., The effect of a short sprint on postexercise whole-body glucose production and utilization rates in individuals with type 1 diabetes mellitus (2012) J Clin Endocrinol Metab, 97, pp. 4193-4200. , COI: 1:CAS:528:DC%2BC38Xhs12ku7zI, PID: 22962428; Bussau, V.A., Ferreira, L.D., Jones, T.W., Fournier, P.A., The 10-s maximal sprint: a novel approach to counter an exercise-mediated fall in glycemia in individuals with type 1 diabetes (2006) Diabetes Care, 29, pp. 601-606. , PID: 16505513; Bussau, V.A., Ferreira, L.D., Jones, T.W., Fournier, P.A., A 10-s sprint performed prior to moderate-intensity exercise prevents early post-exercise fall in glycaemia in individuals with type 1 diabetes (2007) Diabetologia, 50, pp. 1815-1818. , COI: 1:STN:280:DC%2BD2svmtVamtw%3D%3D, PID: 17583795; Yardley, J.E., Kenny, G.P., Perkins, B.A., Effects of performing resistance exercise before versus after aerobic exercise on glycemia in type 1 diabetes (2012) Diabetes Care, 35, pp. 669-675. , COI: 1:CAS:528:DC%2BC38Xmt1Ciu7g%3D, PID: 22374639; Guelfi, K.J., Ratnam, N., Smythe, G.A., Effect of intermittent high-intensity compared with continuous moderate exercise on glucose production and utilization in individuals with type 1 diabetes (2007) Am J Physiol Endocrinol Metab, 292, pp. E865-E870. , COI: 1:CAS:528:DC%2BD2sXjsFeqtL4%3D, PID: 17339500; Iscoe, K.E., Riddell, M.C., Continuous moderate-intensity exercise with or without intermittent high-intensity work: effects on acute and late glycaemia in athletes with Type 1 diabetes mellitus (2011) Diabet Med, 28, pp. 824-832. , COI: 1:STN:280:DC%2BC3MngtlKgsA%3D%3D, PID: 21388440; Bally, L., Zueger, T., Buehler, T., Metabolic and hormonal response to intermittent high-intensity and continuous moderate intensity exercise in individuals with type 1 diabetes: a randomised crossover study (2016) Diabetologia, 59, pp. 776-784. , COI: 1:CAS:528:DC%2BC28XnsFGjtA%3D%3D, PID: 26739816; Davey, R.J., Jones, T.W., Fournier, P.A., Effect of short-term use of a continuous glucose monitoring system with a real-time glucose display and a low glucose alarm on incidence and duration of hypoglycemia in a home setting in type 1 diabetes mellitus (2010) J Diabetes Sci Technol, 4, pp. 1457-1464. , PID: 21129341; Bally, L., Zueger, T., Pasi, N., Accuracy of continuous glucose monitoring during differing exercise conditions (2016) Diabetes Res Clin Pract, 112, pp. 1-5. , COI: 1:CAS:528:DC%2BC2MXitV2ksbrF, PID: 26739116; Home, P.D., Meneghini, L., Wendisch, U., Improved health status with insulin degludec compared with insulin glargine in people with Type 1 diabetes (2012) Diabet Med, 29, pp. 716-720. , COI: 1:CAS:528:DC%2BC38XhtFSru7bM, PID: 22150786; Nasrallah, S.N., Nasrallah, L.R., Raymond Reynolds, L., Insulin degludec, the new generation basal insulin or just another basal insulin? (2012) Clin Med Insights Endocrinol Diabetes, 5, p. 31. , COI: 1:CAS:528:DC%2BC38Xmtlyrt7g%3D, PID: 22879797; Pellegrini, S., Cantarelli, E., Sordi, V., The state of the art of islet transplantation and cell therapy in type 1 diabetes (2016) Acta Diabetol, 53, pp. 683-691. , COI: 1:CAS:528:DC%2BC28XjvVynsrY%3D, PID: 26923700; Hering, B.J., Clarke, W.R., Bridges, N.D., Phase 3 trial of transplantation of human islets in type 1 diabetes complicated by severe hypoglycemia (2016) Diabetes Care, 39, pp. 1230-1240. , COI: 1:CAS:528:DC%2BC2sXns1ehur4%3D, PID: 27208344; Delmonte, V., Codella, R., Piemonti, L., Effects of exercise in a islet-transplanted half-marathon runner: outcome on diabetes management, training and metabolic profile (2014) Sport Sci Health; Boehncke, S., Poettgen, K., Maser-Gluth, C., Endurance capabilities of triathlon competitors with type 1 diabetes mellitus (2009) Dtsch Med Wochenschr, 134, pp. 677-682. , COI: 1:STN:280:DC%2BD1M3jtFylsw%3D%3D, PID: 19319767; Komatsu, W.R., Gabbay, M.A.L., Castro, M.L., Aerobic exercise capacity in normal adolescents and those with type 1 diabetes mellitus (2005) Pediatr Diabetes, 6, pp. 145-149. , PID: 16109070; Levy, B.I., Schiffrin, E.L., Mourad, J.-J., Impaired Tissue Perfusion (2008) Circulation, 118, p. 968. , PID: 18725503; Kivelä, R., Silvennoinen, M., Touvra, A.-M., Effects of experimental type 1 diabetes and exercise training on angiogenic gene expression and capillarization in skeletal muscle (2006) FASEB J, 20, pp. 1570-1572. , PID: 16816123; Krause, M.P., Riddell, M.C., Hawke, T.J., Effects of type 1 diabetes mellitus on skeletal muscle: clinical observations and physiological mechanisms (2011) Pediatr Diabetes, 12, pp. 345-364. , COI: 1:CAS:528:DC%2BC3MXoslOmu78%3D, PID: 20860561; Chiang, J.L., Kirkman, M.S., Laffel, L.M.B., Type 1 Diabetes through the life span: a position statement of the American Diabetes Association (2014) Diabetes Care, 37, pp. 2034-2054. , PID: 24935775; Colberg, S.R., Sigal, R.J., Yardley, J.E., Physical activity/exercise and diabetes: a position statement of the American Diabetes Association (2016) Diabetes Care, 39, pp. 2065-2079. , PID: 27926890; Yardley, J.E., Kenny, G.P., Perkins, B., Resistance versus aerobic exercise: acute effects on glycemia in type 1 diabetes (2013) Diabetes Care, 36, pp. 537-542. , COI: 1:CAS:528:DC%2BC3sXktFOhtbY%3D, PID: 23172972; Almeida, S., Riddell, M.C., Cafarelli, E., Slower conduction velocity and motor unit discharge frequency are associated with muscle fatigue during isometric exercise in type 1 diabetes mellitus (2008) Muscle Nerve, 37, pp. 231-240. , COI: 1:STN:280:DC%2BD1c%2FovVyltw%3D%3D, PID: 18041050; Magee, M.F., Bhatt, B.A., Management of decompensated diabetes. Diabetic ketoacidosis and hyperglycemic hyperosmolar syndrome (2001) Crit Care Clin, 17, pp. 75-106. , COI: 1:CAS:528:DC%2BD3MXhtlKnu7g%3D, PID: 11219236; Horton, W.B., Subauste, J.S., Care of the athlete with type 1 diabetes mellitus: a clinical review (2016) Int J Endocrinol Metab, 14. , PID: 27679652; Gallen, I.W., Hume, C., Lumb, A., Fuelling the athlete with type 1 diabetes (2011) Diabetes Obes Metab, 13, pp. 130-136. , COI: 1:STN:280:DC%2BC3M%2FosVSiug%3D%3D, PID: 21199264; Andersen, H., Poulsen, P.L., Mogensen, C.E., Jakobsen, J., Isokinetic muscle strength in long-term IDDM patients in relation to diabetic complications (1996) Diabetes, 45, pp. 440-445. , COI: 1:CAS:528:DyaK28Xjs1Gjtb0%3D, PID: 8603765; Andreassen, C.S., Jakobsen, J., Ringgaard, S., Accelerated atrophy of lower leg and foot muscles–a follow-up study of long-term diabetic polyneuropathy using magnetic resonance imaging (MRI) (2009) Diabetologia, 52, pp. 1182-1191. , COI: 1:STN:280:DC%2BD1MzhtF2jtw%3D%3D, PID: 19280173; Campbell, M.D., Walker, M., Bracken, R.M., Insulin therapy and dietary adjustments to normalize glycemia and prevent nocturnal hypoglycemia after evening exercise in type 1 diabetes: a randomized controlled trial (2015) BMJ Open Diabetes Res Care, 3, p. e000085. , PID: 26019878; McAuley, S.A., Horsburgh, J.C., Ward, G.M., Insulin pump basal adjustment for exercise in type 1 diabetes: a randomised crossover study (2016) Diabetologia, , PID: 27168135; Sherr, J.L., Cengiz, E., Palerm, C.C., Reduced hypoglycemia and increased time in target using closed-loop insulin delivery during nightswith or without antecedent afternoon exercise in type 1 diabetes (2013) Diabetes Care; Martínez-Ramonde, T., Alonso, N., Cordido, F., Importance of exercise in the control of metabolic and inflammatory parameters at the moment of onset in type 1 diabetic subjects (2014) Exp Clin Endocrinol Diabetes, 122, pp. 334-340. , PID: 24798862; Davey, R.J., Howe, W., Paramalingam, N., The effect of midday moderate-intensity exercise on postexercise hypoglycemia risk in individuals with type 1 diabetes (2013) J Clin Endocrinol Metab, 98, pp. 2908-2914. , COI: 1:CAS:528:DC%2BC3sXhtFCiu7jP, PID: 23780373; Tunar, M., Ozen, S., Goksen, D., The effects of Pilates on metabolic control and physical performance in adolescents with type 1 diabetes mellitus (2012) J Diabetes Complications, 26, pp. 348-351. , PID: 22609217; Yardley, J.E., Kenny, G.P., Perkins, B.A., Resistance exercise in already-active diabetic individuals (READI): study rationale, design and methods for a randomized controlled trial of resistance and aerobic exercise in type 1 diabetes (2015) Contemp Clin Trials, 41, pp. 129-138. , PID: 25559915; Shetty, V.B., Fournier, P.A., Davey, R.J., Effect of exercise intensity on glucose requirements to maintain euglycemia during exercise in type 1 diabetes (2016) J Clin Endocrinol Metab, 101, pp. 972-980. , COI: 1:CAS:528:DC%2BC28Xht1OqsbrI, PID: 26765581; Davey, R.J., Bussau, V.A., Paramalingam, N., A 10-s sprint performed after moderate-intensity exercise neither increases nor decreases the glucose requirement to prevent late-onset hypoglycemia in individuals with type 1 diabetes (2013) Diabetes Care, 36, pp. 4163-4165. , COI: 1:CAS:528:DC%2BC3sXhvFaksLbL, PID: 24130362; Komatsu, W.R., Barros Neto, T.L., Chacra, A.R., Dib, S., Aerobic exercise capacity and pulmonary function in athletes with and without type 1 diabetes (2010) Diabetes Care, 33, pp. 2555-2557. , PID: 20807874; Veves, A., Saouaf, R., Donaghue, V.M., Aerobic exercise capacity remains normal despite impaired endothelial function in the micro- and macrocirculation of physically active IDDM patients (1997) Diabetes, 46, pp. 1846-1852. , COI: 1:CAS:528:DyaK2sXntVKitL8%3D, PID: 9356035; Gusso, S., Hofman, P., Lalande, S., Impaired stroke volume and aerobic capacity in female adolescents with type 1 and type 2 diabetes mellitus (2008) Diabetologia, 51, pp. 1317-1320. , COI: 1:CAS:528:DC%2BD1cXmslWhu70%3D, PID: 18446317; Salem, M.A., AboElAsrar, M.A., Elbarbary, N.S., Is exercise a therapeutic tool for improvement of cardiovascular risk factors in adolescents with type 1 diabetes mellitus? A randomised controlled trial (2010) Diabetol Metab Syndr, 2, p. 47. , PID: 20618996; Herbst, A., Kordonouri, O., Schwab, K.O., Impact of physical activity on cardiovascular risk factors in children with type 1 diabetes: a multicenter study of 23,251 patients (2007) Diabetes Care, 30, pp. 2098-2100. , COI: 1:CAS:528:DC%2BD2sXpsleks7o%3D, PID: 17468347; Huber, J., Fröhlich-Reiterer, E.E., Sudi, K., The influence of physical activity on ghrelin and IGF-1/IGFBP-3 levels in children and adolescents with type 1 diabetes mellitus (2010) Pediatr Diabetes, 11, pp. 383-385. , COI: 1:CAS:528:DC%2BC3cXht1Kmt7nJ, PID: 19863750; Laaksonen, D.E., Atalay, M., Niskanen, L.K., Aerobic exercise and the lipid profile in type 1 diabetic men: a randomized controlled trial (2000) Med Sci Sports Exerc, 32, pp. 1541-1548. , COI: 1:CAS:528:DC%2BD3cXntVylu7g%3D, PID: 10994902; Dubé, M.C., Joanisse, D.R., Prud’homme, D., Muscle adiposity and body fat distribution in type 1 and type 2 diabetes: varying relationships according to diabetes type (2006) Int J Obes, 30, pp. 1721-1728; Kennedy, A., Nirantharakumar, K., Chimen, M., Does exercise improve glycaemic control in type 1 diabetes? A systematic review and meta-analysis (2013) PLoS ONE; Bohn, B., Herbst, A., Pfeifer, M., Impact of physical activity on glycemic control and prevalence of cardiovascular risk factors in adults with type 1 diabetes: a cross-sectional multicenter study of 18,028 patients (2015) Diabetes Care, 38, pp. 1536-1543. , PID: 26015557; Quirk, H., Blake, H., Tennyson, R., Physical activity interventions in children and young people with Type 1 diabetes mellitus: a systematic review with meta-analysis (2014) Diabet Med, 31, pp. 1163-1173. , COI: 1:STN:280:DC%2BC2cfms1GgtQ%3D%3D, PID: 24965376; Avogaro, A., Gnudi, L., Valerio, A., Effects of different plasma glucose concentrations on lipolytic and ketogenic responsiveness to epinephrine in type I (insulin-dependent) diabetic subjects (1993) J Clin Endocrinol Metab, 76, pp. 845-850. , COI: 1:STN:280:DyaK3s3jt1Wnug%3D%3D, PID: 8473394; da Silva, K.M., de Bittencourt, P.I.H., Type 1 diabetes: can exercise impair the autoimmune event? TheL-arginine/glutamine coupling hypothesis (2008) Cell Biochem Funct, 26, pp. 406-433; Codella, R., Luzi, L., Inverardi, L., Ricordi, C., The anti-inflammatory effects of exercise in the syndromic thread of diabetes and autoimmunity (2015) Eur Rev Med Pharmacol Sci, 19, pp. 3709-3722. , COI: 1:STN:280:DC%2BC28zlvVCktg%3D%3D, PID: 26502862; Galassetti, P., Riddell, M.C., Exercise and type 1 diabetes (T1DM) (2013) Compr Physiol, 3, pp. 1309-1336. , PID: 23897688; Pedersen, B.K., Saltin, B., Exercise as medicine—Evidence for prescribing exercise as therapy in 26 different chronic diseases (2015) Scand J Med Sci Sport; West, D.J., Campbell, M.D., Gonzalez, J.T., The inflammation, vascular repair and injury responses to exercise in fit males with and without Type 1 diabetes: an observational study (2015) Cardiovasc Diabetol, 14, p. 71. , PID: 26044827; Steppel, J.H., Horton, E.S., Exercise in the management of type 1 diabetes mellitus (2003) Rev Endocr Metab Dis, 4, pp. 355-369
PY - 2017
Y1 - 2017
N2 - Abstract: Plethoric evidence reminds of the protective effects of exercise against a number of health risks, across all ages, in the general population. The benefits of exercise for individuals with type 2 diabetes are indisputable. An in-depth understanding of energy metabolism has reasonably entailed exercise as a cornerstone in the lifestyle of almost all subjects with type 1 diabetes. Nevertheless, individuals with type 1 diabetes often fail in accomplishing exercise guidelines and they are less active than their peer without diabetes. Two major obstacles are feared by people with type 1 diabetes who wish to exercise regularly: management of blood glucose control and hypoglycemia. Nowadays, strategies, including glucose monitoring technology and insulin pump therapy, have significantly contributed to the participation in regular physical activity, and even in competitive sports, for people with type 1 diabetes. Novel modalities of training, like different intensity, interspersed exercise, are as well promising. The beneficial potential of exercise in type 1 diabetes is multi-faceted, and it has to be fully exploited because it goes beyond the insulin-mimetic action, possibly through immunomodulation. © 2017, Springer-Verlag Italia.
AB - Abstract: Plethoric evidence reminds of the protective effects of exercise against a number of health risks, across all ages, in the general population. The benefits of exercise for individuals with type 2 diabetes are indisputable. An in-depth understanding of energy metabolism has reasonably entailed exercise as a cornerstone in the lifestyle of almost all subjects with type 1 diabetes. Nevertheless, individuals with type 1 diabetes often fail in accomplishing exercise guidelines and they are less active than their peer without diabetes. Two major obstacles are feared by people with type 1 diabetes who wish to exercise regularly: management of blood glucose control and hypoglycemia. Nowadays, strategies, including glucose monitoring technology and insulin pump therapy, have significantly contributed to the participation in regular physical activity, and even in competitive sports, for people with type 1 diabetes. Novel modalities of training, like different intensity, interspersed exercise, are as well promising. The beneficial potential of exercise in type 1 diabetes is multi-faceted, and it has to be fully exploited because it goes beyond the insulin-mimetic action, possibly through immunomodulation. © 2017, Springer-Verlag Italia.
KW - Autoimmunity
KW - Glucose monitoring
KW - Hypoglycemia
KW - Immunomodulation
KW - Insulin pump
KW - lactic acid
KW - pyruvic acid
KW - insulin
KW - aerobic exercise
KW - Article
KW - exercise
KW - glycemic control
KW - glycolysis
KW - human
KW - immunomodulation
KW - insulin dependent diabetes mellitus
KW - insulin response
KW - insulin sensitivity
KW - lipid metabolism
KW - nonhuman
KW - outcome assessment
KW - practice guideline
KW - priority journal
KW - protein metabolism
KW - resistance training
KW - risk benefit analysis
KW - treatment indication
KW - animal
KW - glucose blood level
KW - healthy lifestyle
KW - insulin infusion
KW - kinesiotherapy
KW - metabolism
KW - non insulin dependent diabetes mellitus
KW - physiology
KW - Animals
KW - Blood Glucose
KW - Diabetes Mellitus, Type 1
KW - Diabetes Mellitus, Type 2
KW - Exercise
KW - Exercise Therapy
KW - Guidelines as Topic
KW - Healthy Lifestyle
KW - Humans
KW - Insulin
KW - Insulin Infusion Systems
U2 - 10.1007/s00592-017-0978-x
DO - 10.1007/s00592-017-0978-x
M3 - Article
VL - 54
SP - 615
EP - 630
JO - Acta Diabetologica
JF - Acta Diabetologica
SN - 0940-5429
IS - 7
ER -