Wide gene expression profiling of ischemia-reperfusion injury in human liver transplantation

Anna Confi, Simona Scala, Paola D'Agostino, Elena Alimenti, Daniele Morelli, Barbara Andria, Angela Tammaro, Chiara Attanasio, Floriana Della Ragione, Vincenzo Scuderi, Floriana Fabbrini, Maurizio D'Esposito, Ernesto Di Florio, Lucio Nitsch, Fulvio Calise, Antonio Faiella

Research output: Contribution to journalArticlepeer-review


Ischemia-reperfusion injury (IRI) causes up to 10% early liver failures in humans and can lead to a higher incidence of acute and chronic rejection. So far, very few studies have investigated wide gene expression profiles associated with the IRI process. The discovery of novel genes activated by IRI might lead to the identification of potential target genes for the prevention or treatment of the injury. In our study, we compared gene expression levels in reperfused livers (RL group) vs. the basal values before retrieval from the donor (basal liver [BL] group) using oligonucleotide array technology. We examined 10 biopsies from 5 livers, analyzing approximately 33,000 genes represented on the Affymetrix HG-U133APlus 2.0 oligonucleotide arrays (Affymetrix, Santa Clara, CA). About 13,000 individual genes were considered expressed in at least 1 condition. A total of 795 genes whose expression is significantly modified by ischemia-reperfusion in human liver transplantation were identified in this study. Some of them are likely to be completely activated by IRI, as they are not expressed in basal livers. The supervised gene expression analysis revealed that at least 12% of the genes involved in the apoptotic process, 12.5% of the genes involved in inflammatory processes, and 22.5% of the genes encoding for heat shock proteins are differentially expressed in RL samples vs. BL samples. Furthermore, IRI induces the upregulation of some genes' coding for adhesion molecules and integrins. In conclusion, we have identified a relevant amount of early genes regulated in the human liver after 7-9 hours of cold ischemia and 2 hours from reperfusion, many of them not having been described before in this process. Their analyses may help us to better understand the pathophysiology of IRI and to characterize potential target genes for the prevention or treatment of the liver injury in order to increase the number of patients that successfully undergo transplantation.

Original languageEnglish
Pages (from-to)99-113
Number of pages15
JournalLiver Transplantation
Issue number1
Publication statusPublished - 2007

ASJC Scopus subject areas

  • Surgery
  • Transplantation


Dive into the research topics of 'Wide gene expression profiling of ischemia-reperfusion injury in human liver transplantation'. Together they form a unique fingerprint.

Cite this