X-linked ichthyosis

Clinical and molecular findings in 35 Italian patients

Research output: Contribution to journalArticle

Abstract

Recessive X-linked ichthyosis (XLI), the second most common ichthyosis, is caused by mutations in the STS gene encoding the steroid sulfatase enzyme. A complete deletion of the STS gene is found in 85%-90% of cases. Rarely, larger deletions involving contiguous genes are detected in syndromic patients. We report the clinical and molecular genetic findings in a series of 35 consecutive Italian male patients. All patients underwent molecular testing by MLPA or aCGH, followed, in case of negative results, by next-generation sequencing analysis. Neuropsychiatric, ophthalmological and paediatric evaluations were also performed. Our survey showed a frequent presence of disease manifestations at birth (42.8%). Fold and palmoplantar surfaces were involved in 18 (51%) and 7 (20%) patients, respectively. Fourteen patients (42%) presented neuropsychiatric symptoms, including attention-deficit hyperactivity disorder and motor disabilities. In addition, two patients with mental retardation were shown to be affected by a contiguous gene syndrome. Twenty-seven patients had a complete STS deletion, one a partial deletion and 7 carried missense mutations, two of which previously unreported. In addition, a de novo STS deletion was identified in a sporadic case. The frequent presence of palmoplantar and fold involvement in XLI should be taken into account when considering the differential diagnosis with ichthyosis vulgaris. Our findings also underline the relevance of involving the neuropsychiatrist in the multidisciplinary management of XLI. Finally, we report for the first time a de novo mutation which shows that STS deletion can also occur in oogenesis.

Original languageEnglish
Number of pages8
JournalExperimental Dermatology
DOIs
Publication statusE-pub ahead of print - Apr 19 2018

Fingerprint

X-Linked Ichthyosis
Genes
Steryl-Sulfatase
Pediatrics
Gene encoding
Ichthyosis Vulgaris
Ichthyosis
Testing
Oogenesis
Enzymes
Mutation
Gene Deletion
Missense Mutation
Attention Deficit Disorder with Hyperactivity
Intellectual Disability
Molecular Biology
Differential Diagnosis
Parturition

Cite this

@article{79176d0edf534db29951e9fe61b5dd75,
title = "X-linked ichthyosis: Clinical and molecular findings in 35 Italian patients",
abstract = "Recessive X-linked ichthyosis (XLI), the second most common ichthyosis, is caused by mutations in the STS gene encoding the steroid sulfatase enzyme. A complete deletion of the STS gene is found in 85{\%}-90{\%} of cases. Rarely, larger deletions involving contiguous genes are detected in syndromic patients. We report the clinical and molecular genetic findings in a series of 35 consecutive Italian male patients. All patients underwent molecular testing by MLPA or aCGH, followed, in case of negative results, by next-generation sequencing analysis. Neuropsychiatric, ophthalmological and paediatric evaluations were also performed. Our survey showed a frequent presence of disease manifestations at birth (42.8{\%}). Fold and palmoplantar surfaces were involved in 18 (51{\%}) and 7 (20{\%}) patients, respectively. Fourteen patients (42{\%}) presented neuropsychiatric symptoms, including attention-deficit hyperactivity disorder and motor disabilities. In addition, two patients with mental retardation were shown to be affected by a contiguous gene syndrome. Twenty-seven patients had a complete STS deletion, one a partial deletion and 7 carried missense mutations, two of which previously unreported. In addition, a de novo STS deletion was identified in a sporadic case. The frequent presence of palmoplantar and fold involvement in XLI should be taken into account when considering the differential diagnosis with ichthyosis vulgaris. Our findings also underline the relevance of involving the neuropsychiatrist in the multidisciplinary management of XLI. Finally, we report for the first time a de novo mutation which shows that STS deletion can also occur in oogenesis.",
author = "Andrea Diociaiuti and Adriano Angioni and Elisa Pisaneschi and Viola Alesi and Giovanna Zambruno and Antonio Novelli and {El Hachem}, May",
note = "{\circledC} 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.",
year = "2018",
month = "4",
day = "19",
doi = "10.1111/exd.13667",
language = "English",
journal = "Experimental Dermatology",
issn = "0906-6705",
publisher = "Wiley-Blackwell",

}

TY - JOUR

T1 - X-linked ichthyosis

T2 - Clinical and molecular findings in 35 Italian patients

AU - Diociaiuti, Andrea

AU - Angioni, Adriano

AU - Pisaneschi, Elisa

AU - Alesi, Viola

AU - Zambruno, Giovanna

AU - Novelli, Antonio

AU - El Hachem, May

N1 - © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

PY - 2018/4/19

Y1 - 2018/4/19

N2 - Recessive X-linked ichthyosis (XLI), the second most common ichthyosis, is caused by mutations in the STS gene encoding the steroid sulfatase enzyme. A complete deletion of the STS gene is found in 85%-90% of cases. Rarely, larger deletions involving contiguous genes are detected in syndromic patients. We report the clinical and molecular genetic findings in a series of 35 consecutive Italian male patients. All patients underwent molecular testing by MLPA or aCGH, followed, in case of negative results, by next-generation sequencing analysis. Neuropsychiatric, ophthalmological and paediatric evaluations were also performed. Our survey showed a frequent presence of disease manifestations at birth (42.8%). Fold and palmoplantar surfaces were involved in 18 (51%) and 7 (20%) patients, respectively. Fourteen patients (42%) presented neuropsychiatric symptoms, including attention-deficit hyperactivity disorder and motor disabilities. In addition, two patients with mental retardation were shown to be affected by a contiguous gene syndrome. Twenty-seven patients had a complete STS deletion, one a partial deletion and 7 carried missense mutations, two of which previously unreported. In addition, a de novo STS deletion was identified in a sporadic case. The frequent presence of palmoplantar and fold involvement in XLI should be taken into account when considering the differential diagnosis with ichthyosis vulgaris. Our findings also underline the relevance of involving the neuropsychiatrist in the multidisciplinary management of XLI. Finally, we report for the first time a de novo mutation which shows that STS deletion can also occur in oogenesis.

AB - Recessive X-linked ichthyosis (XLI), the second most common ichthyosis, is caused by mutations in the STS gene encoding the steroid sulfatase enzyme. A complete deletion of the STS gene is found in 85%-90% of cases. Rarely, larger deletions involving contiguous genes are detected in syndromic patients. We report the clinical and molecular genetic findings in a series of 35 consecutive Italian male patients. All patients underwent molecular testing by MLPA or aCGH, followed, in case of negative results, by next-generation sequencing analysis. Neuropsychiatric, ophthalmological and paediatric evaluations were also performed. Our survey showed a frequent presence of disease manifestations at birth (42.8%). Fold and palmoplantar surfaces were involved in 18 (51%) and 7 (20%) patients, respectively. Fourteen patients (42%) presented neuropsychiatric symptoms, including attention-deficit hyperactivity disorder and motor disabilities. In addition, two patients with mental retardation were shown to be affected by a contiguous gene syndrome. Twenty-seven patients had a complete STS deletion, one a partial deletion and 7 carried missense mutations, two of which previously unreported. In addition, a de novo STS deletion was identified in a sporadic case. The frequent presence of palmoplantar and fold involvement in XLI should be taken into account when considering the differential diagnosis with ichthyosis vulgaris. Our findings also underline the relevance of involving the neuropsychiatrist in the multidisciplinary management of XLI. Finally, we report for the first time a de novo mutation which shows that STS deletion can also occur in oogenesis.

U2 - 10.1111/exd.13667

DO - 10.1111/exd.13667

M3 - Article

JO - Experimental Dermatology

JF - Experimental Dermatology

SN - 0906-6705

ER -